声发射传感器原理与应用:从基础到高级检测方案
130声发射(Acoustic Emission, AE)是指材料或结构在受到应力作用时,因内部微观变形、裂纹扩展或塑性变形而释放的瞬态弹性波现象。
查看全文搜索产品搜索文章
一、方案目标
实现电力电缆故障点精确定位(误差≤±1米),缩短故障修复时间至传统方法的30%以下,适用于10kV~220kV交联聚乙烯电缆的低阻(<100Ω)、高阻(>100kΩ)及闪络性故障。
二、核心技术原理
行波法(预定位)
原理:向故障电缆注入高压脉冲,利用故障点产生的行波信号在电缆端头的反射时间差(ΔT)计算距离。
公式:故障距离 L = (v × ΔT) / 2(v为波速度,典型值160m/μs)。
技术优势:
适应高阻与闪络性故障(配合高压发生器);
支持长距离定位(最大20km)。
电桥法(低阻故障定位)
原理:构建惠斯通电桥,通过比对故障相与完好相的阻抗比值确定故障点。
公式:故障距离 Lx = (R1 / (R1 + R2)) × L(L为电缆全长)。
技术优势:
低阻故障定位精度达±0.2%;
抗电磁干扰能力强。
双模协同逻辑:
① 行波法快速锁定故障区间(粗定位);
② 电桥法在区间内精确标定故障点(精定位)。
基于行波法与电桥法的电缆故障精确定位方案
三、实施流程
步骤1:故障诊断
使用绝缘电阻测试仪(如MIT420)判断故障类型:
低阻故障(<100Ω)→ 优先电桥法;
高阻/闪络故障→ 启用行波法。
步骤2:预定位(行波法)
设备:高压脉冲发生器(如Baur PGK20)+ 行波采集仪(如SebaKMT TDR32)。
操作:
① 在电缆首端注入8kV脉冲;
② 捕捉反射波形,解析故障点反射峰(图1);
③ 输出故障区间(例:距首端1.2km±5%)。
步骤3:精确定点(电桥法+声磁同步)
设备:数字电桥(如Megger TDR1000)+ 声磁同步定点仪(如SebaKMT AQUASCAN)。
操作:
① 在预定位区间敷设电桥,调节平衡电阻R1/R2;
② 计算精确距离(例:1253m);
③ 沿路径施加高压脉冲,通过声磁探头捕捉故障点放电声(图2),验证位置。
步骤4:结果验证
开挖前使用接地电阻测试仪复测故障点过渡电阻,确认一致性。
四、技术优势
精度提升:双法协同将定位误差从单一行波法的±10米压缩至±1米;
效率倍增:预定位+精确定点流程≤2小时(传统方法需6~8小时);
全故障覆盖:兼容低阻、高阻、闪络、断线等复杂故障;
抗干扰设计:电桥法抗地网干扰,声磁同步法可过滤环境噪声。
五、应用案例
某220kV变电站出线电缆(长度3.2km)发生高阻故障(阻值>500kΩ):
行波法:预定位故障距首端1.85km(反射波形特征:图3);
电桥法:精确定位于1,842m处;
声磁同步:捕捉到显著放电声信号(峰值42dB),开挖验证误差0.3米。
六、注意事项
行波法需校正波速度(v值受绝缘材质影响);
电桥法要求电缆有完好相作为参考;
声磁同步定位需在安静环境下进行(夜间效果更佳)。
方案价值:通过双模技术闭环,实现故障定位从“区间推测”到“点坐标输出”的跨越,显著降低抢修成本与停电损失。
声发射(Acoustic Emission, AE)是指材料或结构在受到应力作用时,因内部微观变形、裂纹扩展或塑性变形而释放的瞬态弹性波现象。
查看全文在电力系统中,局放传感器犹如一位默默守护的卫士,能够敏锐捕捉到电力设备局部放电产生的微弱信号,从而为设备的安全稳定运行提供重要保障。然而,不同的电力工况有着各自独特的环境与运行要求,只有依据这些差异精准选型,局放传感器才能充分发挥其效能。
查看全文接地极在线监测系统是一种用于监测高压直流输电线路换流站接地极运行状态的先进系统。该系统通过实时监测接地极的各项参数,如入地电流、接地井水温和水位,以及接地极周边环境的温度、湿度、风速、风向、雨量、气压等,为电力系统的安全稳定运行提供重要保障。
查看全文
您好!请登录